Name \qquad Date \qquad

Right Triangles
 The Converse of the Pythagorean Theorem Independent Practice

1. Prove that each example below is a Pythagorean triple.

Part A: 77, 420, 427

Part B: 279, 440, 521

Part C: 39, 760, 761
2. Determine if the triples below are right triangles.

Part A: 290, 696, 750

Part B: 514, 684, 855

Part C: 450, 1080, 1170
3. Consider the following figure.

Determine if the triangle on the coordinate plane is a right triangle by using the converse of the Pythagorean theorem.
4. If a triangle has side lengths of 56,90 , and 106 , then determine which number correlates to the legs and hypotenuse.

56 is a \qquad 90 is a \qquad 106 is a \qquad
5. How can you determine which of the three numbers is the hypotenuse? Once the hypotenuse is identified, then does it matter which length you substitute for the a and b in $a^{2}+b^{2}=c^{2}$? Justify your answer.
6. For any triangle with side lengths a, b, and c, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle; if $a^{2}+b^{2}>c^{2}$, then the triangle is an acute triangle; and if $a^{2}+b^{2}<c^{2}$, then the triangle is an obtuse triangle.

Determine if the following lengths of a given triangle is an acute, right, or obtuse triangle.

Part A: $30,40,50$ is a(n) \qquad triangle.

Part B: $0.3,0.4,0.6$ is a(n) \qquad triangle.

Part C: $11,12,15$ is $a(n)$ \qquad triangle.
7. Determine which of the following triples is not a right triangle. Select all that apply.

90, 215, 243
60,144, 156
40,75, 85
20,22, 29
33,56, 65

