\qquad

Triangles - Part 1
Triangle Congruence - SSS and SAS - Part 2 Independent Practice

1. Ernie draws $\triangle M A R$ and $\triangle N I L$ where $\overline{M R} \cong \overline{N L}, \overline{M A} \cong \overline{N I}$, and $\angle A \cong \angle I$. Draw a sketch of $\triangle M A R$ and $\triangle N I L$ to determine if Ernie can use either SSS or SAS to prove the two triangles congruence. If the answer is no, explain what additional information the Ernie needs.
2. Consider quadrilateral $M A R K$.

Given: $\overline{M A} \cong \overline{R K}$ and $\overline{M A} \| \overline{R K}$
Prove: $\triangle M A K \cong \triangle R K A$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

3. Rose claims that since $\triangle M T W \cong \triangle R F S$ are both equiangular triangles, then they must be congruent by the SSS Congruence Postulate. Determine whether Rose correct or incorrect? Justify your answer.
4. Complete the paragraph proof.

Given: $\overline{G I} \cong \overline{I R} \cong \overline{G L} \cong \overline{R L}$
Prove: $\triangle G I R \cong \triangle G L R$

$\overline{G R}$ is congruent to $\overline{G R}$ by the \qquad property of congruence. Since it is given that \qquad , then it is possible to say
$\Delta G I R \cong \Delta G L R$ by \qquad Congruence Postulate.
5. Draw $\triangle T H S$ and complete the sentences below.

Part A: The angle that is included between $\overline{H T}$ and $\overline{S T}$ is \qquad .

Part B: \qquad and \qquad include $\angle S$.

