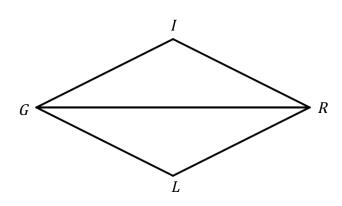

Triangles – Part 1 Triangle Congruence – SSS and SAS – Part 2 Independent Practice

1. Ernie draws ΔMAR and ΔNIL where $\overline{MR} \cong \overline{NL}$, $\overline{MA} \cong \overline{NI}$, and $\angle A \cong \angle I$. Draw a sketch of ΔMAR and ΔNIL to determine if Ernie can use either SSS or SAS to prove the two triangles congruence. If the answer is no, explain what additional information the Ernie needs.

2. Consider quadrilateral MARK.

Given: $\overline{MA} \cong \overline{RK}$ and $\overline{MA} \parallel \overline{RK}$

Prove: $\Delta MAK \cong \Delta RKA$


Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

3.	Rose claims that since $\Delta MTW \cong \Delta RFS$ are both equiangular triangles, then they must be
	congruent by the SSS Congruence Postulate. Determine whether Rose correct or
	incorrect? Justify your answer.

Given: $\overline{GI} \cong \overline{IR} \cong \overline{GL} \cong \overline{RL}$ Prove: $\Delta GIR \cong \Delta GLR$

 \overline{GR} is congruent to \overline{GR} by the ______ property of congruence. Since it is given that ______, then it is possible to say $\Delta GIR \cong \Delta GLR \text{ by } \underline{\qquad} \text{Congruence Postulate.}$

5. Draw ΔTHS and complete the sentences below.

Part A: The angle that is included between \overline{HT} and \overline{ST} is ______.

Part B: _____ and ____ include $\angle S$.

