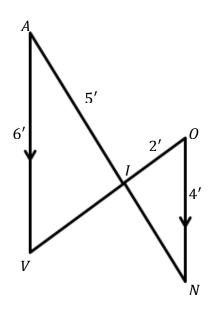
Date_____

Name ____

Triangles – Part 2 Triangle Similarity – Part 2 Mini Assessment

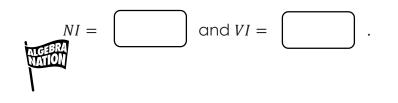
1. Consider the figure below.



Part A: Select all the statements that are enough to prove $\triangle AVI \sim \triangle NOI$.

- □ The sides of $\triangle AVI$ and $\triangle NOI$ are proportional. Hence, $\triangle AVI \sim \triangle NOI$ by the SSS Similarity Criterion.
- □ There are two pairs of sides that are proportional, \overline{AV} and \overline{NO} , and \overline{AI} and \overline{OI} . By Vertical Angles Theorem, $\angle VIA \cong \angle OIN$. Hence, $\triangle AVI \sim \triangle NOI$ by the SAS Similarity Criterion.
- □ Because $\overline{AV} \cong \overline{N0}$ and $\angle VIA \cong \angle OIN$ by Vertical Angles Theorem, $\angle AVI \cong \angle NOI$ by CPCTC. Hence, $\triangle AVI \sim \triangle NOI$ by the AAS Similarity Criterion.
- □ Because $\overline{AV} \cong \overline{NO}$, the other two sides $\triangle AVI$ and $\triangle NOI$ are proportional. Hence, $\triangle AVI \sim \triangle NOI$ by the SSS Similarity Criterion.
- □ Because $\overline{AV} \parallel \overline{NO}$, $\angle AVI \cong \angle NOI$, and $\angle IAV \cong \angle INO$ by Alternate Interior Angle Theorem. Hence, $\triangle AVI \sim \triangle NOI$ by the AA Similarity Criterion.
- □ Because $\overline{AV} \parallel \overline{NO}$, $\angle IAV \cong \angle INO$ by Alternate Interior Angle Theorem. By Vertical Angles Theorem, $\angle VIA \cong \angle OIN$. Hence, $\triangle AVI \sim \triangle NOI$ by the AA Similarity Criterion.

Part B: Determine the length of \overline{NI} and \overline{VI} .



AlgebraNation.com