Name \qquad Date \qquad

Triangles - Part 1
Introduction to Triangles - Part 1 Independent Practice

1. Consider the diagram below of an equilateral triangle.

How long is each side of the triangle? Justify your answer.
2. Match the description to the type of triangle that is produced.

Description

a) \qquad One Obtuse Angle
b) \qquad All 60° angles No Congruent sides
c) \qquad
d) \qquad One Right Angle
e) \qquad Three Congruent Sides
f) \qquad Three Acute Angles
g) \qquad Two Congruent Sides

Type of Triangle
i. Equilateral
ii. Acute
iii. Obtuse
iv. Equiangular
v. Isosceles
vi. Scalene
vii. Right
3. Consider the figure below.

Part A: Mrs. Konsdorf claims that angle R is a right angle. Is Mrs. Konsdorf correct? Explain your reasoning.

Part B: If T is transformed under the rule $(x, y) \rightarrow(x-1, y-2)$, then does T^{\prime} form a right angle at $\angle G R T^{\prime}$?
4. Consider the triangle below.

Part A: If $\triangle A M G$ is an isosceles triangle with base $\overline{A G}$, what is the value of x ? Justify your answer.

Part B: What is the length of each leg?

Part C: What is the length of the base?
5. Consider the diagram on the right. Classify each triangle as equilateral, isosceles, or scalene.
$\Delta I H G$: \qquad
$\Delta H J I:$ \qquad
$\Delta K H I$: \qquad
$\Delta H J K$: \qquad

AlgebraNation.com

